친환경 저비용 배터리 소개서

01. 사업개요

02. 기술소개

03. 회사소개

» 폐배터리로 인한 주요 이슈, 복원 배터리 사용을 통한 솔루션

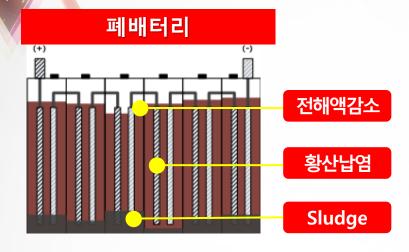
- 배터리 폐기로 인한 환경오염 문제
- 폐배터리 재활용 중 경제비용, 온실가스 발생
- 폐배터리 운반, 재활용 중 **황산전해액 유출** 위험
- 폐배터리 재활용시 온실가스 약 50Kg/개 발생
- 배터리 **폐기과정** 중 **온실가스 약 40만톤/년 발생** (80Ah SLI배터리 제조시 탄소배출량 14kgCO2(960W) 기준 추산)
- 배터리 폐기로 인해 세계 온실가스 8백만톤 발생 (국내 배터리 시장을 세계 배터리 시장의 5%로 추정하여 계산)
- 복원 배터리 사용을 통한 솔루션
- 파리협약에 의한 국내 온실가스 감축목표: 2030년까지 BAU(851백만톤) 대비 37% 감축
- 배터리 복원을 통해 3,000,000톤의 온실가스 감축할 경우, **국내 감축 목표량의 1% 달성 가능**
- 복원배터리 사용시 **평균 40% 비용절감** 효과

BAU: Business as Usual, 평시 온실가스 배출 전망치

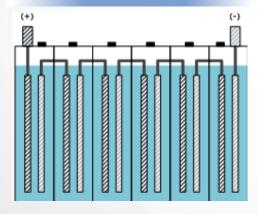
경제비용 손실

환경적 손실

02. 복원 기술의 사업화


» 납 배터리 Life Cycle 연장을 위한 턴투의 복원기술

- 납 배터리는 전세계적으로 안정성과 낮은 생산단가로 장기간 사용된 2차전지임
 - 복원대상 배터리: 장비 차량 시동용, 시설 유지용 UPS(비상전원 배터리), 전동지게차용 산업용 배터리, 태양광, 풍력 등 신재생 애너지의 독립형 ESS(전력저장장치) 등
- 배터리 성능복원 및 수명연장 기술을 확보한 국내 및 세계 유일 기업임
 - 납 배터리 사용 수명연장을 위한 타 업체들의 시도들이 단편적으로 있었으나 기술적 완성도 미흡
- 기존의 단편적 기술시도에 대한 연구, G-밸리의 IT와 S/W 협력업체와의 협업을 통해 복원기술 완성
- 더욱 효율적인 고객친화적 제품, 서비스 공급을 위해 지속적인 연구개발 투자 진행 중
- 세계 최초 복원 배터리 대량생산 공장 설립, 가동 중(2015년 12월)
- 국내 최초 복원 배터리 분야 각종 정부인증 취득
 - 녹색기술인증(환경부), 성능인증(중소기업청), 우수제품 인증(조달청)



복원배터리

» 배터리 성능 저하 요인

- 전해액 감소
- Sludge 발생

- 황산납염 형성
- 셀간 성능 불균형 발생

» 복원을 통한 성능 개선

물리적 **Treatment**

- 전해액 절대 질량 재 확보
- Sludge 제거로 산화 환원 반응 촉진
- 셀간 Ballanding

전기 전자적 **Treatment** ■ 황산납염 제거를 통한 극판의 반응 면적 확보 및 재 활성화

화학적 **Treatment**

- 복원 성능 유지
- 극판의 산화 방지

02. 인증 및 특허

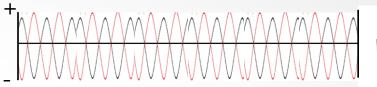
» 인증 현황

특허명		인증기관	인증번호	내용
녹색기술인증	A Cortification	환경부	GT-1100301호	전해액 재활용을 통한 납축 배터리의 복원 및 충전 기술
제품성능인증	성능인증제품	중소기업청	제11-292호	전해액 재활 용을 이용한 재생 납축 배터리
우수제품지정	C	조달청	2015065	SLI 및 UPS 배터리 42개 품목

» 특허 현황

	특허명	내용	출원/등록	진행 상태
	배터리 복원 방법	폐 배터리의 전해액을 전량 재활용 하여 정류 작업을 거친 후 신품과 유사한 배터리를 재 생산하는 기술	등록 2015년 1월 8일	등록
보유	납산배터리 전해액 여과장치	전해액에 포함되어있는 불순물 제거	등록 2014년 8월 5일	등록
특허	배터리 천공기	배터리 내부의 침전물을 배출하기 위한 천공작업에 쓰이는 장비	등록 2014년 6월 20일	등록
및	전해액 방출기	배터리의 침전물을 토출시키는 장비 극판손상의 최소화 및 작업의 효율성 향상	등록 2014년 6월 20일	등록
특허 출원 사항	전해액정류기	전해액에 포함되어 있는 불순물 정화 장치	등록2014년2월5일	등록
사항	최대 크기의 주파수를 이용한 마이크 로웨이브 기반 내부 온도 측정 방법 및 장치	마이크로웨이브를 이용한 내부의 열원 측정 기술 - 생산기술원 특허 이전	이전 2014년 11월 26일	기술이전
	UPS용 직렬 축전지 상태 진단 및 그 방법	UPS 배터리 성능 Monitoring 및 진단기술	출원 2014년 12월 11일	출원

TUTTU ENARCHE


» 정부 연구 수행 과제

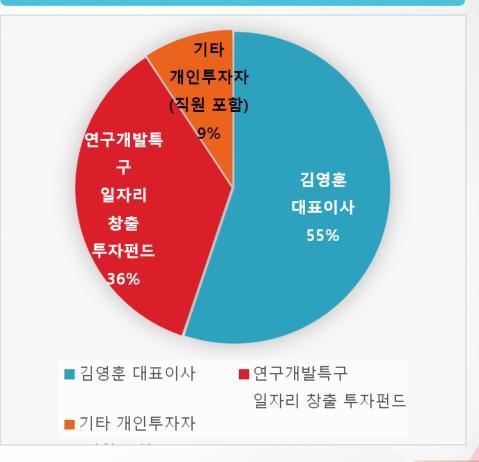
기관명	사업명	과제명	진행상황
한국환경산업 기술원	중소환경기업 사업화 지원사업	폐배터리 전해액 재사용 여과장치	완료(성공)
중소기업 기술정보진흥원	창업성장 기술개발사업	자동화기기의 비상용 배터리 성능 점검 시스템	완료(성공)
한국산업 기술 진흥원	산업기술 혁신사업	폐배터리 전해액 방출기 자동화 공정 시스템	완료(성공)

» 산학 협력

학교명	학과	지도교수
국립금오공과대학교	산학협력단	곽호상 단장
서울공업고등학교	신재생 에너지학과	이상범 교장

» 복원 장비

- ■배터리 종류별 · 제조사별 · Capacity별로 다른 극판의 진동계수와 복원 Signal의 공진주파수 구현을 위한 Impedance Matching을 기본으로 한 복원 장비
- ■배터리에 부합되는 공진주파수 적용을 위하여 최대 14MHz이상의 RF와 최하 2KHz의 Pulse 파를 사용
- ■정전압 · 정전류 충전 방식을 뛰어 넘는 시간 별 · 구간별 충전 값(Charging Value) 제어시스템 적용으로 충전효율 극대화
- ■장비에 온도 보상 시스템 적용으로 과 충전에 의한 배터리 손상 예방
- ■원격 Monitoring System을 통해 외부에서도 복원 진행 상태 확인 가능(안드로이드 App 개발 완료)



» 회사 개요

법인명		주식회사 턴투 (Turnto Co., Ltd.)	
대표자		김영훈	
설립일		2011년 3월	
주소	본사/공장	경상북도 상주시 함창읍 오동리 847	
, 	서울 사무소	서울시 금천구 가산동 371-6 가산비즈니스센터 1401호	
연락처		전화)02-866-3701 / 팩스)02-866-3801 <u>www.turnto.co.kr</u>	
주사업		■ 친환경 납축 복원 배터리 ■ 복원장비 생산 ■ 배터리 복원 Plant 수출	
주요인증		 조달 우수제품 지정 (조달청) 벤처기업지정 (중소기업진흥공단) 녹색기술인증 (환경부) 제품성능인증 (중소기업청) 	

» 주주 구성(지분율)

» 회사 연혁

2020년 IPO

2011~2012 2015 2013 2014 2016

회사발전 기틀 마련

미래성장기반 구축

중장기 이익구조 견실화

- 친환경 복원 배터리 공급
- 배터리 유지관리 서비스
- 배터리 복원 플랜트 해외 수출
- 다양한 목적별 전용 배터리 복원장비 개발
- 온실가스 감축량 인증
- 온실가스 배출권 획득 사업
- 융합기술 개발 및 사업화

● 03: ㈜**턴투 설립**

● 03: 부설연구소 설립

(인수자: 이후창업투자)

● 07: **3억 전환사채 발행** ● 01: 중국 TUS Holdings ● 03: **중국 상덕환경과** MOU 체결

합자계약 체결 (1차 100만불 규모 합자법인 설립 준비중)

● 05: 벤처기업 지정

● 04: 성능인증 획득 (중소기업청)

10: **상환우선주 발행** (연구개발특구일자리 창출 펀드 유치

운용사:대성창업투자: 06: 우수제품 지정

05: 공장 건축 준공 (경북 상주시)

(조달청)

04: 크라우드펀딩 공모

● 11: 녹색기술인증 취득 (환경부)

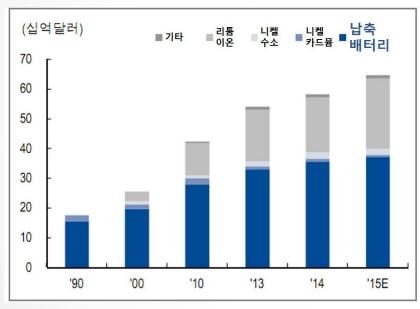
● 06: 환경지원과제 선정 (KEITI)

● 11: 공장부지 매입, 착공 (부지 2,000평)

● 10: 우수제품 단가계약 (42개 품목)

● 11: 생산설비 시운전, 가동

● 07: 창업성장 과제 선정 (중소기업청)


● 08: 제품서비스 산업 기반 구축(KIAT)

● 12: 국군지휘통신사령부 UPS 배터리복워사업 수주

» Global 2차전지 종류별 시장규모

(출처: Avicenne Energy, NH투자증권 리서치센터)

» Global 납축 전지 시장규모

단위: USD Mil.

구분	Year2014	Year2020	CAGR
합계	44,689	58,552	4.6%

(출처: Future Market Insights 리포트, 2015년2월26일)

» 아태지역 납축 전지 시장 규모

단위: USD Mil.

구분	Year2014	Year2020	CAGR
합계	15,297	19,881	4.5%

(출처: Future Market Insights 리포트, 2015년2월26일)

Distributor

Manufacturer

Smelter

Storefront

Consumers

Collecting Comp.

1,000:

» 대성에너지 몽골 랄라이흐구 Geep-Site 태양광/풍력 ESS(전력저장장치) 복원

PROJECT 개요

Project명	• 대성 에너지 몽골 랄라이흐구 Gee—Site 태양광 및 풍력 전략 저장장치 복원
복원 대상	• 태양광용 배터리 120Cell • 풍력용 배터리 40Cell
상태	2010년 설치 이후 2012년 배터리 성능 저하로가동정지
기간	• 2014년 8월 20일 ~ 9월 4일 (약 2주)
복원 결과	• 총 160Cell 중 155Cell 성능 95%이상 복원 • 5Cell은 외형 파손으로 신품으로 대체

감사합니다

